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In [1-3], there is a discussion on wavefront propagation (shock wave or discontinuity 
in the [2] terminology) in a layered medium. The propagation speed and amplitude have been 
calculated [3] for a linear medium. Here a nonlinear layered medium is consider for them. 

The boundary-value treatment for a nonlinear wave equation is considered. Often, it 
is convenient to reduce the boundary-value treatment to one concerned with the initial con- 
ditions, as they can be useful in a numerical treatment and this is necessary in statistical 
analysis, since a treatment withinitial data provides dynamic causality, which is required 
in order to construct thestatistical theory. The invariant immersion method IIM is often 
used for that purpose. 

A general concept in IIM is that the solution is determined from an immersion system, 
with a heuristic method of obtaining it as follows: we assume that the treatment is charac- 
terized by a parameter and allows an exact solution for a certain initial value of it. 
Then one varies the parameter to transfer from the simple treatment (soluble exactly) to the 
actual one, which is related to causality in the equations for the invariant immersion with 
respect to the adjustable parameter: the solution is governed only by the preceding values 
of the parameter and is independent of the subsequent ones. That approach has been discus- 
sed and used for detailed calculations in various aspects of wave proapagation theory [3-5] 
and scattering theory [6-8]. Here those equations for the nonstationary case of propagation 
in a nonlinear layered medium are derived. Those equations are then used to calculate the 
speed and amplitude. 

Let a layer in the medium occupy part of the space ~(Lo~x~L ) , on which there is 
incident from the right a plane wave ~ = T(x--L ~ t) , which interacts with the medium in 
such a way that the region x > L produces a reflected wave R(x -- L -- t) , while the wave 
pattern is u(x, t) ~ ~(x-- L ~ t) ~ R(x-- L ~ t). The field u = u(x,t) in the layer is de- 
fined by 

u t t  - -  u ~  = f ~t, f = f ( . ,  u) = e ( x ,  u ) u ,  ( 1 )  

in which g(x, u) describes the properties of the medium and the field self-action (the sub- 
scripts here and subsequently denote the partial derivatives with respect to the correspond- 
ing arguments). Equation (i) arises for example from the description of the electric field 
of an electromagnetic wave incident from vacuum at right angles to the boundary of a non- 
magnetic medium having a nonlinearity of any form [9], in which g characterizes the devia- 
tion of the dielectric constant from one. There is only the transmitted wave T(x- L 0 ~ t) 
in the region x < L0. Then u(x, t) satisfies 

L 

u (x, t) = cp (x - -  L q- t) q- y dxl  y d t ,gF  (x 1, u (~l. tl))t,_q. (2) 
L o 

Here g = g(X -- Xl, t -- tl) = (I/2)0(t -- t I -- IX -- X1[) is the Green's function for the wave operat- 
ing in free space, while the incident field is q) ~ ~dtlg(x- L, t- tl)/(tl) , in which 
/(t)----2(pt(t) (2) gives immediately the boundary conditions for (i): 

(a~ + @ ,~ (x, t) Ix_~ = / (t), (a:~ - a~) u (x, t) jX=~o = o.  ( 3 ) 
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The wave pattern u ( x , t )  = u (x , t ;  L) is dependent on L (the position of the right-hand 
boundary of the layer), and it is used as the immerison parameter. The general IIM concept 
leads us to relate 8u/3L to the field u. The relationship contains 8u/St and the variational 
derivative 6u/6f. We vary (2) with respect to L and f(s I) to get 

UL (X, t; L) = CpL (x - -  L + t) -4- ~ dtlg (x - -  L, t - -  tl) F(L, u (L, t~; L ) ) q q +  
L 

-5 .[ dxi 5 dt lg[Fu(xl '  U)UL]StI' 
L o 

L 

5] (q) g (x - -  L, t ~ sa) -5 dxl dtlg Fu (x 1, u) 5~(q) qq  
L o 

(4) 

(u = u(x.  q; L)). 
sought in the form 

These equations show that the relation between 6u/SL and 6u/6f is to the 

~, ~u (x, t; L) F (L, v (t 1, L))t/1 ( 5 )  UL (x, t; L) = ,  (x, t; L) + j ~-1 87 ~tT) 

with the unknown functions to be determined ~ = ~(x, t; L) and v(t, L) = u(L,t; L). On sub- 
stituting (5) into (4), we see that ~ satisfies an equation in variations for (2) and that 
the parameter -~c is the variation one. Then ~ = -u t and (5) becomes 

(OL + at) u (x,. t; L) = O ~q 7 5_}__(t7)~ ,4" 6u (x, t; L) F (L, v (t 1, L))q%,, (6) 

which may be considered as a differential equation for the wave field u(x,t; L)with the initial 
c o n d i t i o n s  u ( x , t ;  L)]L= x = U(x , t ; x ) .  We have OLV(t , L ) ~  (0 L + Ox)u(x ' t; L)Ix= L f o r  t h e  unkown 
f u n c t i o n  v ( t ,  L) .  The f i r s t  t e rm on t h e  r i g h t  i s  d e f i n e d  by ( 6 ) - w i t h  x = L, w h i l e  t h e  second 
i s  e x p r e s s e d  from ( 3 ) ,  so we g e t  t h e  c l o s e d  i n t e g r o d i f f e r e n t i a l  e q u a t i o n  

(OL + 20,) v (t, L)  = / (t) + ~ a- 5v (t, L) ~, , r  ~ q ~ ' U - ' ,  v(q ,  L) )qq  (7) 

with initial condition v(t, L) IL=Lo = ~(t). 

System (6) and (7) is the immersion one for this case and is causal with respect to L; 
u(x, t; L) at point x is determined by those values of L for which x < L. Furthe~ analysis 
of (6) and (7) may be based on arelation between the variational derivative of the wave field 
and the derivative with respect to time: 

Ou (x, t; L) + ~ dtl/(tl)  O 5u (x, t; L) ;.0, (s) at 0 oq ~l (q)  " 

which follows from (5) and (6) together with the second equation in (4). 

The solutions u and v to (6) and (7) are certain functionals of f, which we repreent as 

U = ~ S . . . 5 d l l . . . d t n u ' l ~ ( g , t ; ' l  . . . . .  "r~;L) Hl ( t i ) ,  
~=1 {=1 

n 

' n : l  l ~ l  

(9) 

with coefficients for u n and v n symmetrical with respect to t i. The time arguments t and 
t i appear in the combination t - ti, and to show this, we substitute (9) into (8) and equate 

n 

the coefficients to powers of f term by term to zero, which gives OtUn-5 ~, Ot~Un= 0 , whose 

general solution is an arbitrary function of the first integrals ci ---- t -- ti (i = I, .:., n) 
and variables x and L, so u n ~- u~(x, t-- tl, ..., t t~; L). 
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To determine the coefficient functions, we substitute (9) into (6) and (7) and equate 
the coefficients to powers of f, which gives us a linked equation system. In the linear 
case, e(x, u) ~ e(x) , and the only coefficient functions different from zero are u I = G!(x, 
t--tl; L) (the Green's function here) and vI=G(L, t--t6 L) :H(t--tl, L)~ The immersion: 
equations 

(C~c + Or) G (x, t - -  q; L) = e (L) S dt~G (x, t - -  t2; L) H (t 2 - -  t~, L)t2~2,. 

(OL + 2Or) H (t - -  t~, L) = 6 (t - -  t~) + e (L) y dt~H (t - -  t2, L) H (t 2 - -  t~)t~t 2 

coincide with those obtained in [3, 4]. In general, th~ system defining the coefficient func- 
tions is infinite, and it is necessary to know all those functions in order to derive the 
wave pattern. It has proved possible to solve this problem in calculating the speed and 
amplitude. 

The wavefront concept is related to the general solution u(x, t) to (i) [i, 2]. We 
consider a certain curve F in the (x, t) space-time for each point on which there exist one- 
sided bounds to u(x, t), but which are not equal, so u(x, t) has a finite step. Then the 
motion of point x over F can be interpreted as the propagation of the discontinuity in u(x, 
t), the wavefront, over time. For example, in free space (E = 0), the general solution 
u(x~ t) ~ O(x ~ t) to (I) corresponds to a wave whose front propagates with unit velocity and 
amplitude and which attains the point -x at time t, with curve F defined by x = -t. 

Now let the medium occupy a half-space (this enables us to avoid considering the reflec- 
tion at the left-hand boundary), while ~ ( x - - L  ~ t ) - -  ( t / 2 ) O ( x - - L  ~ t - -  to) in (2) describes 
a wave whose front attains the boundary x = L at t = t o . The interaction with the medium 
results in a reflected wave R(x--L-- t) and a shock wave in the medium. The amplitude 
v0 of the shock wave at x = L at t = t o + 0 can be derived from (7) with /(t) : 6(t- to)~ 
while the speed c and amplitude u a in the layer are given by (6). For that purpose, one 
needs to distinguish the singular contributions (~6 functions) and the regular contributions 
(-8 functions) in (6) and (7). In the first case, we get an equation for c and v0 and in 
the second, a differential equation for u a. 

We first examine the structure of u : u(x, t; L), u I ~ u1(x, t; L; s~) : 5u/5/(sl), v : u(t, L)~ 
Ul= UIIx=L ~ u1(t, L; Sl). We vary (6) and (7) with respect to f(si) and put / : 5(t-- t0) ~ to 
get an equation for u I and Vl, with f on the right in (7) becoming 6(t - tl). Then it is 
clear that v and v I contain the factors 0(t -- to) and O(t--tl) correspondingly. The L causal- 
ity in the immersion equations means that 

u : O ( t - - a ( x ,  L ) -  to~(X, t; L), 

u 1 = O(t - -  al(x,  L) - -  s1)~l(X , t; L; sl) , (io) 

in which o (ol) is the time at which point x is reached by the wavefront u (ul)o We substi- 
tute (i0) into (8) and equate the coefficients to the 6 and 0 functions term by term to zero 
to get 

a = a~, u (x ,  a '~ to; L) = u',(x, c% ,~ to; L; to), 

ut  (x, t; L) ---- - -  u l q  (x, t; L; t 0 ]q=t o. 
(ii} 

The speed c and amplitude Ua are defined by c =.i/'a~, ua : ~x~ q ~ to; L), To derive 
and u, we substitute (I0) into (6) and (7) and separate the contributions from the 6 ar~i 8 
functions. The system for the 5 function coefficients is 

(~L(X, L ) =  t -  F (L ,  ~(to, L)) ,  

2~'(to, L) = I + F(L ,  "~(t o, L))~( to ,  L; to). 
(iz) 

Then (ii) and the form of F in (1) give an equation 
v 0 =~(L)= ~to, L) at x = L and t = t o + 0: 

for the shock-wave amplitude 
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( L ,  - -  + = O. (13) 

In general, there are several solutions v0, and the necessary branch is defined by the re- 
quirement for continuous linkage with the solution to the linear treatment for e = 0. We 
substitute ~(L) into the first equation in (12) and integrate subject to ~(x, x) = 0, 
to get o(x, L). It is clear that ~x(x, L) =--~e(x, L) , and then we use (13) to get the 
speed in the layers: 

c = - -  IIVI - -  e ( x ,  vo (x ) ) .  ( 1 4 )  

The remaining equations after separating the contributions in (6) and (7) are: 

(aL + 2a0 ~ (t, L) = vl  (t, L; t~)0 5 F (L, ~(t~, L ) ) I 5 = t -  
t 

- -  F (n, V(to, L)) aq vl (t, L; tl)itl=to - -  S dr1 at v"l .OtlF; 
t o 

( 1 5 )  

(aL + at) U (X, t; L) = u~ (x, t; L; t 0 a t .F(L,  ~(tj ,  L))I t~=t- .  - -  
f--o" 

- -  F {L, v( t  o, L)) a 5 ux (x, t; L; t 0 Iq=t ~ .[ dt~aqu~.OqF. 
t o 

( 1 6 )  

The functions ul ---- uq(x, t; L; t~), u~'1 ----%~(t, L; tl), F = F(L, "v(t~, L)) appear in the integrals, while 
the equation for the front amplitude is derived from (16) with t = o + t o . Then the in- 
tegral on the rhs in (16) becomes zero, and the second term is grouped with (OL ~-0t~ in 
dua/dL. The remaining term on the right contains Ul(X, ~ + to; L; to) = u(x, ~ + to; L) (see 
(ii)) and the function v~(t,L)It=~ ~ , which we derive from (13) and (15): vt(t, L)l~=t0= 
--  [OLVo ,(L)]2/FL (L, s) s I,=~<L)" 

Then u a satisfies the following equation on the basis of the (i) definition for F: 

d--L = -- \ ~ ]  e L (L, ,) s z (17) =A 
s vo(L) 

with initial condition UalL= x ----~0(X). The r.h.s in (17) is a knwon function of L, so In u a 
is given by simple quadrature. 

For the linear medium, e(x, u)= e(x), and then c = --I/~I- e(x) , and (17) integrates: 

1/1~ (~) ~ (L)~.. ( 1 8 )  
u ~ =  ~ + l c ( L )  l 

(this result was obtained in [3]). In the simple case of field self-action, e(x, u)= z(x)u n • 
(Iz(x)l<<1). Thev0 atx=Latt=t0 +0 is defined by z(L)u~+2=~o--1, and the'necessary 

branch can be constructed by means of elementary perturbation theory v 0 = ~ + v(z) = ~ + 

~v~z i, z-~z(L) . Then we write the rhs for (17) as --(n+i)zzL[Ozln(i +2v(z))]2----- 

--(n + i)zZL ~ ~iZ i: and integrate with respect to L to get 
i=0 

~ Zi+2 
Ua= vo(x) exp[dg(z(x))--dO(z(L))], qD (z) ----- (n + I) i+2" (19) 

i=0 

If n = 0 (linear medium), (19) for u a coincides with (18), so the essentially new point is 
the consideration of n ~ 0. We see from (19) that u a is locally dependent on z(x), and in 
particular if z(x) in (19) is a random function, the deviation of the front amplitude from 
the value at the boundary x = L in the presence of small fluctuations in z is also a small 
quantity, so there is no build-up of changes in front amplitude associated with passage 
through a fluctuating meidum. 
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